Ensemble learning of diffractive optical networks
نویسندگان
چکیده
منابع مشابه
Generalized design of diffractive optical elements using neural networks
Diffractive optical elements (DOE) utilize diffraction to manipulate light in optical systems. These elements have a wide range of applications including optical interconnects, coherent beam addition, laser beam shaping and refractive optics aberration correction. Due to the wide range of applications, optimal design of DOE has become an important research problem. In the design of the DOEs, ex...
متن کاملMimicking Ensemble Learning with Deep Branched Networks
This paper proposes a branched residual network for image classification. It is known that high-level features of deep neural network are more representative than lower-level features. By sharing the low-level features, the network can allocate more memory to high-level features. The upper layers of our proposed network are branched, so that it mimics the ensemble learning. By mimicking ensembl...
متن کاملEnsemble Learning in Bayesian Neural Networks
Bayesian treatments of learning in neural networks are typically based either on a local Gaussian approximation to a mode of the posterior weight distribution, or on Markov chain Monte Carlo simulations. A third approach, called ensemble learning, was introduced by Hinton and van Camp (1993). It aims to approximate the posterior distribution by minimizing the Kullback-Leibler divergence between...
متن کاملEnsemble Learning for Multi-Layer Networks
Bayesian treatments of learning in neural networks are typically based either on local Gaussian approximations to a mode of the posterior weight distribution, or on Markov chain Monte Carlo simulations. A third approach, called ensemble learning, was introduced by Hinton and van Camp (1993). It aims to approximate the posterior distribution by minimizing the Kullback-Leibler divergence between ...
متن کاملMultilayer optical learning networks.
A new approach to learning in a multilayer optical neural network based on holographically interconnected nonlinear devices is presented. The proposed network can learn the interconnections that form a distributed representation of a desired pattern transformation operation. The interconnections are formed in an adaptive and self-aligning fashioias volume holographic gratings in photorefractive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Light: Science & Applications
سال: 2021
ISSN: 2047-7538
DOI: 10.1038/s41377-020-00446-w